Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(7): 610-616, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37403720

RESUMO

Objective To investigate the effects of formononetin (FMN) on cognitive behavior and inflammation in aging rats with chronic unpredictable mild stress (CUMS). Methods SD rats aged about 70 weeks were divided into healthy control group, CUMS model group, CUMS combined with 10 mg/kg FMN group, CUMS combined with 20 mg/kg FMN group and CUMS combined with 1.8 mg/kg fluoxetine hydrochloride (Flu) group. Except for healthy control group, other groups were stimulated with CUMS and administered drugs for 28 days. Sugar water preference, forced swimming experiment and open field experiment were used to observe the emotional behavior of rats in each group. HE staining was used to observe the pathological injury degree of brain equine area. The contents of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were detected by the kit. The apoptosis was tested by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) in the brain tissue. The levels of tumor necrosis factor α (TNF-α), inducible nitric oxide synthase (iNOS) and interleukin 6 (IL-6) in peripheral blood were measured by ELISA. Western blot analysis was used to detect Bcl2, Bcl2 associated X protein (BAX), cleaved caspase-9, cleaved caspase-3, Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and phosphorylated nuclear factor κB p65 (p-NF-κB p65) in brain tissues. Results Compared with CUMS model group, sugar water consumption, open field activity time, open field travel distance and swimming activity time significantly increased in the CUMS combined with 20 mg/kg FMN group and the CUMS combined with 1.8 mg/kg Flu group. The number of new outarm entry increased significantly, while the number of initial arm entry and other arm entry decreased significantly. The pathological damage of brain equine area was alleviated, and the contents of 5-HT and 5-HIAA were significantly increased. The ratio of BAX/Bcl2 and the expression of cleaved caspase-9 and cleaved caspase-3 protein as well as the number of apoptotic cells were significantly decreased. The contents of TNF-α, iNOS and IL-6 were significantly decreased. The protein levels of TLR4, MyD88 and p-NF-κB p65 were significantly decreased. Conclusion FMN can inhibit the release of inflammatory factors by blocking NF-κB pathway and improve cognitive and behavioral ability of CUMS aged rats.


Assuntos
Comportamento Animal , Hipocampo , Isoflavonas , NF-kappa B , Transdução de Sinais , Estresse Fisiológico , Animais , Ratos , Cognição/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Isoflavonas/farmacologia , Envelhecimento , Comportamento Animal/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Anti-Inflamatórios/farmacologia
2.
Nat Plants ; 7(10): 1397-1408, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34650267

RESUMO

Cryptochromes (CRYs) are photoreceptors that mediate light regulation of the circadian clock in plants and animals. Here we show that CRYs mediate blue-light regulation of N6-methyladenosine (m6A) modification of more than 10% of messenger RNAs in the Arabidopsis transcriptome, especially those regulated by the circadian clock. CRY2 interacts with three subunits of the METTL3/14-type N6-methyladenosine RNA methyltransferase (m6A writer): MTA, MTB and FIP37. Photo-excited CRY2 undergoes liquid-liquid phase separation (LLPS) to co-condense m6A writer proteins in vivo, without obviously altering the affinity between CRY2 and the writer proteins. mta and cry1cry2 mutants share common defects of a lengthened circadian period, reduced m6A RNA methylation and accelerated degradation of mRNA encoding the core component of the molecular oscillator circadian clock associated 1 (CCA1). These results argue for a photoregulatory mechanism by which light-induced phase separation of CRYs modulates m6A writer activity, mRNA methylation and abundance, and the circadian rhythms in plants.


Assuntos
Adenosina/análogos & derivados , Arabidopsis/genética , Relógios Circadianos/genética , Criptocromos/metabolismo , Fotorreceptores de Plantas/metabolismo , Adenosina/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação
3.
Plant Sci ; 238: 64-72, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26259175

RESUMO

Light is an important environmental factor inducing anthocyanin accumulation in plants. Phytochrome-interacting factors (PIFs) have been shown to be a family of bHLH transcription factors involved in light signaling in Arabidopsis. Red light effectively increased anthocyanin accumulation in wild-type Col-0, whereas the effects were enhanced in pif4 and pif5 mutants but impaired in overexpression lines PIF4OX and PIF5OX, indicating that PIF4 and PIF5 are both negative regulators for red light-induced anthocyanin accumulation. Consistently, transcript levels of several genes involved in anthocyanin biosynthesis and regulatory pathway, including CHS, F3'H, DFR, LDOX, PAP1 and TT8, were significantly enhanced in mutants pif4 and pif5 but decreased in PIF4OX and PIF5OX compared to in Col-0, indicating that PIF4 and PIF5 are transcriptional repressor of these gene. Transient expression assays revealed that PIF4 and PIF5 could repress red light-induced promoter activities of F3'H and DFR in Arabidopsis protoplasts. Furthermore, chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) test and electrophoretic mobility shift assay (EMSA) showed that PIF5 could directly bind to G-box motifs present in the promoter of DFR. Taken together, these results suggest that PIF4 and PIF5 negatively regulate red light-induced anthocyanin accumulation through transcriptional repression of the anthocyanin biosynthetic genes in Arabidopsis.


Assuntos
Antocianinas/biossíntese , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Luz , Plântula/efeitos da radiação , Vias Biossintéticas/genética , Vias Biossintéticas/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Modelos Biológicos , Motivos de Nucleotídeos/genética , Proteínas Associadas a Pancreatite , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/metabolismo , Transcrição Gênica/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA